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The purpose of this document is to explain the mathematical relationship between Binary and 

Decimal numbering schemes and how this relationship is applied to the application of CV’s 
(Configuration Variables) for DCC (Digital Command Control) control of digital model railway 

decoders. 

 

Particular focus is made here for the DCC CV29 variable although the principle for any CV 
within RailMaster is exactly the same. Similarly, as decoders are NMRA compliant, the same 

goes for most decoders on the market. 
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Bits & Bytes 
 

 

Preamble - The Basics 

 

o What is a Bit 

o What is a Byte 

 

Before answering those two questions it is wise to perhaps explain what a computer can 

understand and what it cannot. To some the following may come as a surprise, while to others 

it is common knowledge. The computer (shall we now just use the term ‘processor’ for 

arguments sake as it is the processor that does the legwork), compared to our brain can 

understand virtually nothing. That’s right, nothing… well, almost nothing. That is there are 

two things that the processor, any computer, large or small, can understand. These are the 

numbers 0 and 1. While zero is not technically a number (the Romans never had a zero, for 

example) it is still a value. It is that value of 0 and the number 1 that the humble and wonderful 

technological device you are reading this on now understands (unless you have printed this). 

That’s it. 

 

So, a simple 0 and 1. So, how does that technology get to do super-fast and massive calculations 

in seconds or less? This document will explain without the need for quantum theory computing 

that understands multiple ‘states’ and will tell you in simple terms how all this works and how 

you can apply Binary to your daily needs as a model rail operator. Your average Joe processor 

only understands two ‘states’. An ‘on’ and an ‘off’. 

 

Bit 

 

In computer terms, the ‘off’ state is represented by the value of ‘0’ and the ‘on’ state by the 

value of ‘1’. These values of ‘0’ and ‘1’ are termed ‘Bits’. 

 

Bits on their own are great for a processor because, as you will see shortly, if the computer as 

a whole just looked at a massive string of 0’s and 1’s it would be in its element if it could 

display emotions et al. But, to us humans, a string of those numbers would be a nightmare to 

understand. So we had the programmers make up a new term which grouped a small amount 

of these Bits together and termed it a Byte. 

 

Byte 

 

A Byte is the computing term given to a group of eight Bits. How does that work then? Easy. 

You now know that a processor can only handle two states or numbers so what we need to do 

now is offer the processor more of them so it can calculate bigger sums. If I give you a coin in 

one hand and no coin in the other, you are effectively given a count of one. If I now give a 

second coin you have a count of two. Or do you? In Decimal, our normal counting system, yes 

you do have two coins. In Binary, you have a count of 1 plus 1. As the state can only be 0 or 1 

we have to come up with a slightly different way of looking at things. This is where the Base 

value arrives. 

 

 

 



Base 

 

In the normal, Decimal, counting system we use a Base of ten or ‘10’. As we count from zero 

to 9 we have no other numbers to use so we have to invent something that expands our counting 

system as, in life, we invariably have more than 9 of everything. So what we do is add 1 to 9 

and use the starting 0 again but with a ‘carried’ 1. By moving the 1 to the left we can always 

find the single unit count on the right hand side. The left hand number becomes a multiple of 

the single right hand number. So we have 1 multiple unit of ten and no single units thus, one, 

zero, represented by ‘10’. The next single unit added makes one, one thus ‘11’ and so on until 

one, nine or ‘19’. We named that nineteen just for recognition purposes. When a further single 

unit is added we get two, zero or ‘20’. Easy as that. 

 

Going back to the Byte scenario we use a Base of two. Therefore, when 1 is added to 1 we 

cannot go past ‘1’ so the next logical step is to make it one full unit thus making ‘10’. Adding 

one to that each time gives… ‘11’, ‘100’, ‘101’, ‘110’, ‘111’, ‘1000’, ‘1001’ and so on. So you 

can see how each addition of a coin is represented in this scenario by adding one to each hand 

if the hand cannot hold more than one item. You would just need lots of hands as numbers 

would grow really fast and it would become impossible to read. 

 

By this score we could easily use a Base of 7 or 3 or 6 or whatever you like up to 10. Base 6 

would be ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘10’, ‘11’, ‘12’ etc. 

 

Thus we have now explained the Binary system. The term ‘Binary’, an adjective, comes from 

“relating to, composed of, or involving two things”. For example: A Binary Star is a ‘star 

system’ consisting of two stars orbiting around their common centre. 

 

Why a Byte is 8 Bits long 

 

The term Byte was first introduced in 1956 as a deliberate spelling changed to keep the 

confusion away from the singular Bit. Given the 2-Bit state powered by 2 gives eight (22) and 

thus the 8 Bits making up one Byte which gives a convenient count of 0 through to 255 in 

Binary when converting to Decimal. So in computing terms a ‘Byte’ contains 8 ‘Bits’ in a 

‘Binary’ two state code. These Bits are defined as Bit 7, Bit 6, Bit 5, Bit 4 through Bit 0. 

 

The following table shows the Byte and its values in Binary and Decimal. 

 

Table 1 

 
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Binary ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ 

Decimal ‘0’ or ‘128’ ‘0’ or ‘64’ ‘0’ or ‘32’ ‘0’ or ‘16’ ‘0’ or ‘8’ ‘0’ or ‘4’ ‘0’ or ‘2’ ‘0’ or ‘1’ 

 

If all Binary values equalled ‘1’ then the Decimal equivalent would equal 255 by adding all 
Decimal values where the Binary equalled ‘1’. However, where a Binary value, anywhere 

along that line, equalled ‘0’ then that equivalent Decimal value is removed from the total of 

255. So, ‘11101011’ would equal 235. 

 

Thus the value of a Decimal number for a Byte never exceeds 255 but can be any value up to 

that. Bit ‘0’ is the equivalent of the right sided single unit in Decimal and thus counts upward 

to the left and thus Bit ‘1’ goes one added position to the left and so on up to Bit ‘7’. 



Converting Binary 8 Bit (1 Byte) to Decimal 

Table 1 is an ‘aide memoir’, a ‘look up’ table that can be used to convert Decimal to Binary 

and Binary to Decimal. 

Converting the Decimal number 88, for example, is the summation of Decimal numbers 64 + 

16 + 8 from the table. If we place a ‘1’ in the Binary row of Table 1 below the three Decimal 

numbers stated above and a ‘0’ in the remaining boxes with no Decimal value, then the Binary 

row would read 0 1 0 1 1 0 0 0. 

Thus: Decimal 88 = Binary 01011000 

Converting Decimal to Binary 8 Bit (1 Byte) 

If we have a Binary 8 Bit number and we want to know what that number is in Decimal we 

populate the Binary row of Table 1 with the ‘0’ & ‘1’ Bits in the correct order. Then, in the 

Binary row boxes where a ‘1’ is present, we add the corresponding Decimal numbers in the 

Decimal row together. 

Example: 

Let’s use Binary 8 Bit number 01001101 and consider it placed in the table. Thus, the Decimal 

numbers that have a matching Binary ‘1’ are as follows: 64 + 8 + 4 + 1 = 77 

Thus: Binary 01001101 = Decimal 77 

Further, if someone said convert the following and just spoke to you and there were no written 

figures to hand you should be able to work it out… 01001011 which would be mental 

arithmetic at its best. Therefore, 64 + 8 + 2 + 1 would equal 75 

NB. You may have noted that each time the Decimal value to the left increases, it doubles. By 

adding one to each sum from zero in Binary you should see and be able to work out why that 

is. 

Try a few out for yourselves… 



Table 2 
 

Decimal 
Binary Bit Decimal Value where adding the total equals that of 

the Decimal number to the left 

Binary 

Equivalent 

0 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 00000000 

1 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 00000001 

2 0 + 0 + 0 + 0 + 0 + 0 + 2 + 0 00000010 

3 0 + 0 + 0 + 0 + 0 + 0 + 2 + 1 00000011 

4 0 + 0 + 0 + 0 + 0 + 4 + 0 + 0 00000100 

5 0 + 0 + 0 + 0 + 0 + 4 + 0 + 1 00000101 

6 0 + 0 + 0 + 0 + 0 + 4 + 2 + 0 00000110 

7 0 + 0 + 0 + 0 + 0 + 4 + 2 + 1 00000111 

8 0 + 0 + 0 + 0 + 8 + 0 + 0 + 0 00001000 

9 0 + 0 + 0 + 0 + 8 + 0 + 0 + 1 00001001 

10 0 + 0 + 0 + 0 + 8 + 0 + 2 + 0 00001010 

to and so on to to 

255 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 11111111 

 

Table 2 extends this concept into a worked example, showing the Binary Byte / Bit sequence 

for the Decimal numbers 0 to 10 inclusive plus 255. 

 

To fully understand the contents of Table 2, it may be helpful to look at the detail in conjunction 

with Table 1. 

 

Looking at the Binary column of Table 2, we can see that there is a sequential progressive 

pattern in the way that the Binary ‘0’s and ‘1’s’ increment as the corresponding Decimal 

number increases by Decimal 1. Thus, every possible combination of ‘Binary Byte’ Bit patterns 

gives 256 possible combinations. That is to say, Decimal 0 to 255. 

 

Working backwards. 
Deriving a Binary 8 Bit Byte sequence from a Decimal number. 

 

As well as using Table 1 to derive the Binary Byte Bits from the Decimal number, we can 

achieve the same result in two further ways. As a worked example let us consider the Decimal 

number 57. This time we start working from the left hand side of the 8 Bit Byte (Bit 7). This 

time each ‘remaining’ number is the next to be divided: 

 

Can we divide  57 by 128 answer is NO thus Bit 7 = 0 

Can we divide 57 by 64 answer is NO thus Bit 6 = 0 

Can we divide 57 by 32 answer is YES thus Bit 5 = 1 (25 remaining) 

Can we divide 25 by 16 answer is YES thus Bit 4 = 1 (9 remaining) 

Can we divide 9 by 8 answer is YES thus Bit 3 = 1 (1 remaining) 

Can we divide 1 by 4 answer is NO thus Bit 2 = 0 

Can we divide 1 by 2 answer is NO thus Bit 1 = 0 

Can we divide 1 by 1 answer is YES thus Bit 0 = 1 (0 remaining*) 

 

* If you don’t end up with zero remaining in the last row, then you have gone wrong somewhere 

with a previous division. 

 

Thus, Decimal 57 = Binary 00111001 



The same basic sequential ‘maths’ process can be used to work back any Decimal number 

between 0 & 255 into a Binary 8 Bit Byte. 

 

As an alternative to the method above, there is a ‘divide by 2 methods’ that can do the same 

task. 

 

In the ‘divide by 2 methods’ the Decimal number is divided by 2. Where the Decimal number 

is ‘even’ the remainder left over after division will be ‘0’. Where the Decimal number is ‘odd’ 

the remainder left over after division will be ‘1’. These ‘0’ & ‘1’ remainders define the Binary 

Bits. 

 

Example with the same Decimal 57 used in first method above: 

 

57 divided by 2 = 28 with 1 remaining 

28 divided by 2 = 14 with 0 remaining 

14 divided by 2 = 7 with 0 remaining 

7 divided by 2 = 3 with 1 remaining 

3 divided by 2 = 1 with 1 remaining 

1 divided by 2 = 0 with 1 remaining 

 

Once the division integer* is zero (0), the division calculations stop. 

 

* Integer, a positive (or negative) whole number or zero. 

 

Now taking the ‘0’ & ‘1’ remaining column and writing the numbers from the ‘Bottom Up’ 

we get: 

 

1 1 1 0 0 1 

 

But this Binary string is not a full 8 Bit Byte because it has only 6 Bits in it. To make it an 8 

Bit Byte we need to add additional ‘padding’ to make a total of 8 Bits in the form of leading 

zeros. 

 

So the final Binary number is: 

 

0 0 1 1 1 0 0 1 

 

This we can see is exactly the same result as that obtained in the first method above, that is to 

say: 

 

Decimal 57 = Binary 00111001 

 

With practice, this alternative method can be quicker to do, but we have to remember to write 

the Binary number in the results from the ‘Bottom Up’ and add as many additional leading 

zero padding Bits as is necessary to create an 8 Bit Byte. 

 

 

  



Another example using this method: 

 

Decimal 6 

 

6 divided by 2 = 3 with 0 remaining 

3 divided by 2 = 1 with 1 remaining 

1 divided by 2 = 0 with 1 remaining 

 

Writing the ‘0’ & ‘1’ column from the ‘Bottom Up’ we get: 

 

1 1 0 

 

We can see that only three Bits have been calculated, so five leading zeros of padding need to 

be added, thus we get: 

 

Decimal 6 = Binary 0 0 0 0 0 1 1 0 

 

See the ‘Decimal 6’ entry in Table 2 for confirmation of this result. 

 

Another example using this method: 

 

Decimal 222 

 

222 divided by 2 = 111 with 0 remaining 

111 divided by 2 = 55 with 1 remaining 

55 divided by 2 = 27 with 1 remaining 

27 divided by 2 = 13 with 1 remaining 

13 divided by 2 = 6 with 1 remaining 

6 divided by 2 = 3 with 0 remaining 

3 divided by 2 = 1 with 1 remaining 

1 divided by 2 = 0 with 1 remaining 

 

Writing the ‘0’ & ‘1’ column from the ‘Bottom Up’ we get: 

 

1 1 0 1 1 1 1 0 

 

We can see that all 8 Bits have been calculated, so no leading zeros of padding need to be 

added, thus we get: 

 

Decimal 222 = Binary 1 1 0 1 1 1 1 0 

 

 

  



How to Implement Binary to any Decoder CV on a Model Railway 
 

 

 
 
Example: applying the previously discussed principles to DCC CV29. 

 

In CV29 there are up to eight features that can be either enabled or disabled by setting the 

appropriate ‘Bit’ in the ‘Byte’. These ‘Bits’ are like ‘on / off’ switches to enable or disable a 

feature. 

 

The eight Bits are: 

 

Table 3 

 
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Binary ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ ‘0’ or ‘1’ 

Decimal ‘0’ or ‘128’ ‘0’ or ‘64’ ‘0’ or ‘32’ ‘0’ or ‘16’ ‘0’ or ‘8’ ‘0’ or ‘4’ ‘0’ or ‘2’ ‘0’ or ‘1’ 
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To enable a specific feature in the table above, the corresponding ‘Bit’ in the eight Bit Byte is 

set to 1. 

 

To disable the specific feature, the corresponding ‘Bit’ in the eight Bit Byte is set to 0. 

 

 



 

Some examples of common Decimal values of CV29 are: 

 

Decimal 2, 6 and 38 

 

In Binary these would be: 

 

Table 4 

 
Binary Decimal Enabled Features 

00000010 2 28 / 128 Speed Steps 

00000110 4+2=6 DC Operation + 28 / 128 Speed Steps 

00100110 32+4+2=38 Long Loco Addresses + DC Operation + 28 / 128 Speed Steps 

 

When looking at Table 4, relate the entries contained within back to the contents of Table 3. 

 

So for example from Table 4 to only enable 28 /128 Speed Steps + DC operation you would 

write Decimal value 6 to CV29. 

 

Changing the Decimal number of the CV changes the corresponding Binary Bit sequence. 

Changing the Binary Bit sequence defines what features are enabled and disabled. 

 

Example: if the loco goes in the wrong direction because the motor has been wired up ‘back to 

front’ to the DCC decoder then rather than take the loco apart and simply unsolder the wires 

on the motor, reverse them and re-solder them, we can fix that issue in the DCC software by 

incrementing the value of CV29 by Decimal 1. 

 

Refer to Table 3 (Bit 0 column) - by incrementing the Decimal value of CV29 by Decimal 1 

the Bit 0 of the 8 Bit Byte is set to Binary 1, this enables the ‘Reverse Direction’ CV29 feature. 

 

So using the three examples in Table 4 above: 

 

The CV29 Decimal 2 value would become Decimal 3 

The CV29 Decimal 6 value would become Decimal 7 

The CV29 Decimal 38 value would become Decimal 39 

 

In principle, the concept of Binary Bits in a CV being set by defining a corresponding 

Decimal number can be applied to any CV. 

 

Example 1 

 

If a manual says set Bit 4 of CV(n) to ‘ON’ or to ’1’ then looking at Table 1 we can see that 

Bit 4 is represented by Decimal 16. So, by adding the Decimal value 16 to the current CV(n) 

Decimal value will enable (or switch ‘ON’ or set to ‘1’) that particular ‘Bit’ in the ‘Byte’. Or 

does it? see note1) 

 

  



Example 2 

 

If a manual says set Bits 3 AND 5 ‘ON’ or set to ‘1’ then looking at Table 1 we can see that 

Bit 3 is represented by Decimal 8 and Bit 5 is represented by Decimal 32. So adding 8 + 32 

(40) to the value of that particular CV(n) will enable (switch ‘ON’ or set to ‘1’) the Bit 3 AND 

Bit 5 of that Byte, or does it? See ** below. 

 

Similarly, if a feature needs to be disabled, you subtract the relevant ‘Bit’ Decimal value in 

Table 1 from the CV(n) Decimal number. Or does it? See ** below. 

 

** In order to minimise the risk of making errors it is essential to always ‘read’ the existing 

CV Decimal value first and derive its Binary Byte sequence before making any changes. Else 

you risk disabling features that have been previously enabled or enabling features that you had 

no intention of enabling. 

 

An example of not deriving the Binary sequence of the CV Decimal value first before 

modifying those CV Decimal values. 

 

Let’s say that a decoder manual states that CV(n) should have Bit 4 set to ‘ON’ or ‘1’ to enable 

a specific feature. Now looking at Table 1 we can see that Bit 4 = Decimal 16. 

 

Now let’s say that the Decimal value of CV(n) is read back and it is found to be Decimal 82. 

 

By adding the Decimal value 16 to the existing Decimal value 82 of CV(n) will result in 

Decimal value 98 being written back to CV(n). 

 

To do that would be a fundamental error. Let’s see why. 

 

By converting the Decimal values back into their Binary Byte sequences we can see that: 

 

The existing CV(n) Decimal value that was 82 = Binary 01010010. 

 

The highlighted (bold) Binary ‘1’ Bit is ‘Bit 4’. We can now see that ‘Bit’ 4 had already been 

set to ‘1’, thus the specific feature that the manual had referred to had already been ‘enabled’. 

 

If we now write Decimal value 98 to CV(n), because Decimal value 16 had just been added to 

the existing Decimal 82 value and written back to CV(n) without checking, we would be setting 

the new Binary Byte sequence as: 

 

Decimal 96 = Binary 01100010. 

 

Binary Bits 5 & 4 above highlighted (bold). 

 

Now, not only have we now set ‘Bit 4’ as ‘0’ (not ‘1’ as required), we have also changed the 

value of ‘Bit 5’ from ‘0’ to ‘1’. 

 

So, in conclusion, not only has the feature that was required in CV(n) been disabled (Bit 4), a 

different feature altogether (Bit 5) has been enabled instead. 

 



By always converting a CV(n) Decimal number into its Binary Byte sequence, prior to writing 

a new value, the risk of making feature configuration errors is greatly reduced. 

 

 

 

Hopefully this tutorial has given a deeper insight to how Binary works using Bits and 

Bytes on a Base Level of 2 and how these can be implemented into any decoder CV. 


